Friday, October 7, 2022
HomeNanotechnologyA common technique for the fabrication of single-photon and multiphoton NIR nanoparticles...

A common technique for the fabrication of single-photon and multiphoton NIR nanoparticles by loading natural dyes into water-soluble polymer nanosponges | Journal of Nanobiotechnology


  • Mitschke U, Bäuerle P. The electroluminescence of natural supplies. J Mater Chem. 2000;10:1471–507.

    CAS 
    Article 

    Google Scholar
     

  • Zampetti A, Minotto A, Cacialli F. Close to-infrared (NIR) natural light-emitting diodes (OLEDs): challenges and alternatives. Adv Funct Mater. 2019;29:1807623.

    Article 
    CAS 

    Google Scholar
     

  • Hedley GJ, Ruseckas A, Samuel IDW. Gentle harvesting for natural photovoltaics. Chem Rev. 2017;117:796–837.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for natural photo voltaic cell purposes. Chem Rev. 2009;109:5868–923.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hagfeldt A, Boschloo G, Solar L, Kloo L, Pettersson H. Dye-sensitized photo voltaic cells. Chem Rev. 2010;110:6595–663.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Y, Zhu W. Natural sensitizers from D–π–A to D-A–π–A: impact of the inner electron-withdrawing items on molecular absorption, vitality ranges and photovoltaic performances. Chem Soc Rev. 2013;42:2039–58.

    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Zhao Z, Wei C, Wei H, Liu Z, Bian Z, Huang C. Evaluation on the electroluminescence examine of lanthanide complexes. Adv Optical Mater. 2019;7:1801256.

    Article 
    CAS 

    Google Scholar
     

  • Pashaei B, Karimi S, Shahroosvand H, Pilkington M. Molecularly engineered near-infrared light-emitting electrochemical cells. Adv Funct Mater. 2020;30:1908103.

    CAS 
    Article 

    Google Scholar
     

  • Solar W, Guo S, Hu C, Fan J, Peng X. Current improvement of chemosensors based mostly on cyanine platforms. Chem Rev. 2016;116:7768–817.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu S, Tian R, Antaris AL, Chen X, Dai H. Close to-infrared-II molecular dyes for most cancers imaging and surgical procedure. Adv Mater. 2019;31:1900321.

    Article 
    CAS 

    Google Scholar
     

  • Minotto A, Murto P, Genene Z, Zampetti A, Carnicella G, Mammo W, Andersson MR, Wang E, Cacialli F. Environment friendly near-infrared electroluminescence at 840 nm with “metal-free” small-molecule: polymer blends. Adv Mater. 2018;30:1706584.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Wang B, Miao T, Liu J, Fu G, Lü X, Feng W, Wong W-Y. Excessive-performance near-infrared (NIR) polymer light-emitting diodes (PLEDs) based mostly on bipolar Ir(iii)-complex-grafted polymers. J Mater Chem C. 2021;9:173–80.

    CAS 
    Article 

    Google Scholar
     

  • Lin WH, Solar TT, Xie ZG, Gu JK, Jing XB. A dual-responsive nanocapsule by way of disulfide-induced self-assembly for therapeutic agent supply. Chem Sci. 2016;7:1846–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Wang XY, Cui QL, Cao Q, Li LD. Self-assembly of fluorescent natural nanoparticles for iron(III) sensing and mobile imaging. ACS Appl Mater Interfaces. 2016;8:7440–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu X, Liu R, Li L. Nanoparticles manufactured from pi-conjugated compounds focused for chemical and organic purposes. Chem Commun (Camb). 2015;51:16733–49.

    CAS 
    Article 

    Google Scholar
     

  • Chuang Y-T, Cheng T-Y, Kao T-L, Liao M-Y. Hole AuxCu1–x alloy nanoshells for surface-enhanced raman-based monitoring of bladder most cancers cells adopted by triggerable secretion removing. ACS Utilized Nano Supplies. 2020;3:7888–98.

    CAS 
    Article 

    Google Scholar
     

  • Huang CC, Liu TM. Managed Au-polymer nanostructures for multiphoton imaging, prodrug supply, and chemo-photothermal remedy platforms. ACS Appl Mater Interfaces. 2015;7:25259–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang Y, Xing J, Gong Q, Chen LC, Liu G, Yao C, Wang Z, Zhang HL, Chen Z, Zhang Q. Lowering aggregation triggered quenching impact by means of co-assembly of PAH chromophores and molecular limitations. Nat Commun. 2019;10:169.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu TM, Yu J, Chang CA, Chiou A, Chiang HK, Chuang YC, Wu CH, Hsu CH, Chen PA, Huang CC. One-step shell polymerization of inorganic nanoparticles and their purposes in SERS/nonlinear optical imaging, drug supply, and catalysis. Sci Rep. 2014;4:5593.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meng F, Wang J, Ping Q, Yeo Y. Quantitative evaluation of nanoparticle biodistribution by fluorescence imaging revisited. ACS Nano. 2018;12:6458–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quan L, Solar T, Wei Y, Lin Y, Gong T, Pan C, Ding H, Liu W, Xie Z. Poly(epsilon-caprolactone) modified natural dyes nanoparticles for noninvasive long run fluorescence imaging. Colloids Surf B Biointerfaces. 2019;173:884–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu H, Chen Z, Chi W, Bindra AK, Gu L, Qian C, Wu B, Yue B, Liu G, Yang G, et al. Structural engineering of luminogens with excessive emission effectivity each in answer and within the strong state. Angew Chem Int Ed Engl. 2019;58:11419–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan Y, Chen J, Yang Z, Zhang X, Liu Z, Hua J. NIR natural dyes based mostly on phenazine-cyanine for photoacoustic imaging-guided photothermal remedy. J Mater Chem B. 2018;6:7420–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yong KT, Legislation WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN. Nanotoxicity evaluation of quantum dots: from mobile to primate research. Chem Soc Rev. 2013;42:1236–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical purposes. Adv Mater. 2019;31: e1805730.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Smith WE, Brownell J, White CC, Afsharinejad Z, Tsai J, Hu X, Polyak SJ, Gao X, Kavanagh TJ, Eaton DL. In vitro toxicity evaluation of amphiphillic polymer-coated CdSe/ZnS quantum dots in two human liver cell fashions. ACS Nano. 2012;6:9475–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49:6726–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weinstain R, Slanina T, Kand D, Klan P. Seen-to-NIR-light activated launch: from small molecules to nanomaterials. Chem Rev. 2020;120:13135–272.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Ok, Liu B. Polymer-encapsulated natural nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43:6570–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reisch A, Klymchenko AS. Fluorescent polymer nanoparticles based mostly on dyes: searching for brighter instruments for bioimaging. Small. 2016;12:1968–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lengthy Ok, Yang Y, Lv W, Jiang Ok, Li Y, Lo ACY, Lam WC, Zhan C, Wang W. Inexperienced light-triggered intraocular drug launch for intravenous chemotherapy of retinoblastoma. Adv Sci. 2021;8: e2101754.

    Article 
    CAS 

    Google Scholar
     

  • Ong SY, Zhang C, Dong X, Yao SQ. Current advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging. Angew Chem Int Ed Engl. 2021;60:17797–809.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang Y, Pu Ok. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res. 2018;51:1840–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47:2280–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zampetti A, Minotto A, Cacialli F. Close to-infrared (NIR) natural light-emitting diodes (OLEDs): challenges and alternatives. Adv Func Mater. 2019;29:1807623.

    Article 
    CAS 

    Google Scholar
     

  • Yu J, Hsu CH, Huang CC, Chang PY. Growth of therapeutic Au-methylene blue nanoparticles for focused photodynamic remedy of cervical most cancers cells. ACS Appl Mater Interfaces. 2015;7:432–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tai YW, Chiu YC, Wu PT, Yu J, Chin YC, Wu SP, Chuang YC, Hsieh HC, Lai PS, Yu HP, Liao MY. Degradable NIR-PTT nanoagents with a possible Cu@Cu2O@polymer construction. ACS Appl Mater Interfaces. 2018;10:5161–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang D, Li ZC, Chen L. Templated synthesis of single-walled carbon nanotube and metallic nanoparticle assemblies in answer. J Am Chem Soc. 2006;128:15078–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang YT, Hsu IL, Cheng TY, Wu WJ, Lee CW, Li TJ, Cheung CI, Chin YC, Chen HC, Chiu YC, et al. Off-resonance SERS nanoprobe-targeted display screen of biomarkers for antigens recognition of bladder regular and aggressive most cancers cells. Anal Chem. 2019;91:8213–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez VB, Henry SM, Hoffman AS, Stayton PS, Li X, Pun SH. Encapsulation and stabilization of indocyanine inexperienced inside poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. J Biomed Decide. 2008;13: 014025.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li YP, Nie WY, Chen PP, Zhou YF. Preparation and characterization of sulfonated poly(styrene-alt-maleic anhydride) and its selective removing of cationic dyes. Colloids Surf A Physicochem Eng Asp. 2016;499:46–53.

    CAS 
    Article 

    Google Scholar
     

  • Wang CF, Xu XF, Zhang W, Bergqvist J, Xia YX, Meng XY, Bini Ok, Ma W, Yartsev A, Vandewal Ok, et al. Low band hole polymer photo voltaic cells with minimal voltage losses. Adv Vitality Mater. 2016;6:1600148.

    Article 
    CAS 

    Google Scholar
     

  • Ajami A, Husinsky W, Liska R, Pucher N. Two-photon absorption cross part measurements of varied two-photon initiators for ultrashort laser radiation making use of the Z-scan method. J Decide Soc Am B. 2010;27:2290–7.

    CAS 
    Article 

    Google Scholar
     

  • Chang YJ, Chow TJ. Extremely environment friendly pink fluorescent dyes for natural light-emitting diodes. J Mater Chem. 2011;21:3091–9.

    CAS 
    Article 

    Google Scholar
     

  • Würthner F, Kaiser TE, Saha-Möller CR. J-aggregates: from serendipitous discovery to supramolecular engineering of practical dye supplies. Angew Chem Int Ed. 2011;50:3376–410.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Yang G, Zou D, Hui Y, Nigam Ok, Middelberg APJ, Zhao C-X. Formulation of nanoparticles utilizing mixing-induced nanoprecipitation for drug supply. Ind Eng Chem Res. 2020;59:4134–49.

    CAS 
    Article 

    Google Scholar
     

  • Tian Y, Sales space J, Meehan E, Jones DS, Li S, Andrews GP. Development of drug-polymer thermodynamic part diagrams utilizing flory-huggins interplay concept: figuring out the relevance of temperature and drug weight fraction to part separation inside strong dispersions. Mol Pharm. 2013;10:236–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu Z. Flash nanoprecipitation: prediction and enhancement of particle stability by way of drug construction. Mol Pharm. 2014;11:776–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Larson N, Greish Ok, Bauer H, Maeda H, Ghandehari H. Synthesis and analysis of poly(styrene-co-maleic acid) micellar nanocarriers for the supply of tanespimycin. Int J Pharm. 2011;420:111–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baranello MP, Bauer L, Benoit DSW. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent launch, and internalization by multidrug resistant ovarian most cancers cells. Biomacromol. 2014;15:2629–41.

    CAS 
    Article 

    Google Scholar
     

  • Deák Á, Sebők D, Csapó E, Bérczi A, Dékány I, Zimányi L, Janovák L. Analysis of pH-responsive poly(styrene-co-maleic acid) copolymer nanoparticles for the encapsulation and pH-dependent launch of ketoprofen and tocopherol mannequin medication. Eur Polymer J. 2019;114:361–8.

    Article 
    CAS 

    Google Scholar
     

  • Susumu Ok, Fisher JAN, Zheng J, Beratan DN, Yodh AG, Therien MJ. Two-photon absorption properties of proquinoidal D–A–D and A–D–A quadrupolar chromophores. J Phys Chem A. 2011;115:5525–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pagano P, Rosendale M, Daniel J, Verlhac J-B, Blanchard-Desce M. Ultrabright pink to NIR emitting fluorescent natural nanoparticles constructed from quadrupolar dyes with large two-photon absorption (2PA) within the NIR area confinement impact on fluorescence and 2PA and tuning of floor properties. J Phys Chem C. 2021;125:25695–705.

    CAS 
    Article 

    Google Scholar
     

  • Liu Y, Yang G, Child T, Tengjisi, Chen D, Weitz DA, Zhao C-X. Steady polymer nanoparticles with exceptionally excessive drug loading by sequential nanoprecipitation. Angew Chem Int Ed. 2020;59:4720–8.

    CAS 
    Article 

    Google Scholar
     

  • Varga N, Turcsanyi A, Hornok V, Csapo E. Vitamin E-loaded PLA- and PLGA-based core-shell nanoparticles: synthesis, construction optimization and managed drug launch. Pharmaceutics. 2019;11:357.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahmed E, Womble CT, Cho J, Dancel-Manning Ok, Rice WJ, Jang SS, Weck M. One-pot synthesis of linear triblock terpolymers and their aqueous self-assembly. Polym Chem. 2021;12:1967–74.

    CAS 
    Article 

    Google Scholar
     

  • Tardivo JP, Del Giglio A, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RDF, Baptista MS. Methylene blue in photodynamic remedy: from primary mechanisms to medical purposes. Photodiagn Photodyn Ther. 2005;2:175–91.

    CAS 
    Article 

    Google Scholar
     

  • Liu Y, Li Z, Chen L, Xie Z. Close to infrared BODIPY-platinum conjugates for imaging, photodynamic remedy and chemotherapy. Dyes Pigm. 2017;141:5–12.

    CAS 
    Article 

    Google Scholar
     

  • Quan L, Liu S, Solar T, Guan X, Lin W, Xie Z, Huang Y, Wang Y, Jing X. Close to-infrared emitting fluorescent BODIPY nanovesicles for in vivo molecular imaging and drug supply. ACS Appl Mater Interfaces. 2014;6:16166–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herman J, Neal SL. Effectivity comparability of the imidazole plus RNO technique for singlet oxygen detection in biorelevant solvents. Anal Bioanal Chem. 2019;411:5287–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Y, Zhen Y, Ma Y, Zheng R, Wang Z, Fu H. Distinctive intersystem crossing in Di(perylene bisimide)s: a structural platform towards photosensitizers for singlet oxygen era. J Phys Chem Lett. 2010;1:2499–502.

    CAS 
    Article 

    Google Scholar
     

  • Liu B, Jiao J, Xu W, Zhang M, Cui P, Guo Z, Deng Y, Chen H, Solar W. Extremely environment friendly Far-Pink/NIR-absorbing impartial Ir(III) advanced micelles for potent photodynamic/photothermal remedy. Adv Mater. 2021;33: e2100795.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Xu X-Q, He Y, Wang Y. Close to-infrared natural chromophores with pH-sensitive, non-radiative emission for clever illness therapy. Cell Rep Phys Sci. 2021;2: 100433.

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    eight + four =

    Most Popular

    Recent Comments