Friday, October 7, 2022
HomeNanotechnologyPresent-driven dynamics and ratchet impact of skyrmion bubbles in a ferrimagnetic insulator

Present-driven dynamics and ratchet impact of skyrmion bubbles in a ferrimagnetic insulator


  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Tokura, Y. & Kanazawa, N. Magnetic skyrmion supplies. Chem. Rev. 121, 2857–2897 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential functions. Nat. Rev. Mater. 2, 17031 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Again, C. et al. The 2020 skyrmionics roadmap. J. Phys. D 53, 363001 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Woo, S. et al. Commentary of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Fert, A., Cros, V. & Sampaio, J. Skyrmions on the monitor. Nat. Nanotechnol. 8, 152–156 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zázvorka, J. et al. Thermal skyrmion diffusion utilized in a reshuffler system. Nat. Nanotechnol. 14, 658–661 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Music, Okay. M. et al. Skyrmion-based synthetic synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kajiwara, Y. et al. Transmission {of electrical} alerts by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cornelissen, L. J. et al. Lengthy-distance transport of magnon spin info in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Wimmer, T. et al. Spin transport in a magnetic insulator with zero efficient damping. Phys. Rev. Lett. 123, 257201 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Avci, C. O. et al. Interface-driven chiral magnetism and current-driven area partitions in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Vélez, S. et al. Excessive-speed area wall racetracks in a magnetic insulator. Nat. Commun. 10, 4750 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ding, S. et al. Interfacial Dzyaloshinskii–Moriya interplay and chiral magnetic textures in a ferrimagnetic insulator. Phys. Rev. B 100, 100406 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Caretta, L. et al. Interfacial Dzyaloshinskii–Moriya interplay arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lee, A. J. et al. Probing the supply of the interfacial Dzyaloshinskii–Moriya interplay liable for the topological Corridor impact in metallic/Tm3Fe5O12 programs. Phys. Rev. Lett. 124, 107201 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii area partitions in ultrathin magnetic movies. Europhys. Lett. 100, 57002 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Emori, S., Bauer, U., Ahn, S.-M. M., Martinez, E. & Seaside, G. S. D. D. Present-driven dynamics of chiral ferromagnetic area partitions. Nat. Mater. 12, 611–616 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ryu, Okay. S., Thomas, L., Yang, S. H. & Parkin, S. Chiral spin torque at magnetic area partitions. Nat. Nanotechnol. 8, 527–533 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Manchon, A. et al. Present-induced spin-orbit torques in ferromagnetic and antiferromagnetic programs. Rev. Mod. Phys. 91, 035004 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lee, A. J. et al. Investigation of the position of rare-earth components in spin-Corridor topological Corridor impact in Pt/ferrimagnetic-garnet bilayers. Nano Lett. 20, 4667–4672 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shao, Q. et al. Topological Corridor impact at above room temperature in heterostructures composed of a magnetic insulator and a heavy metallic. Nat. Electron. 2, 182–186 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ahmed, A. S. S. et al. Spin-Corridor topological Corridor impact in extremely tunable Pt/ferrimagnetic-insulator bilayers. Nano Lett. 19, 5683–5688 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hubert, A. & Schäfer, R. Magnetic Domains: The Evaluation of Magnetic Microstructures (Springer, 1998).

  • Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Büttner, F., Lemesh, I. & Seaside, G. S. D. Concept of remoted magnetic skyrmions: from fundamentals to room temperature functions. Sci. Rep. 8, 4464 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Avci, C. O. et al. Present-induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Li, H., Akosa, C. A., Yan, P., Wang, Y. & Cheng, Z. Stabilization of skyrmions in a nanodisk with out an exterior magnetic discipline. Phys. Rev. Appl. 13, 034046 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, W. et al. Direct remark of the skyrmion Corridor impact. Nat. Phys. 13, 162–169 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Litzius, Okay. et al. Skyrmion Corridor impact revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hirata, Y. et al. Vanishing skyrmion Corridor impact on the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Woo, S. et al. Present-driven dynamics and inhibition of the skyrmion Corridor impact of ferrimagnetic skyrmions in GdFeCo movies. Nat. Commun. 9, 959 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Crossley, S. et al. Ferromagnetic resonance of perpendicularly magnetized Tm3Fe5O12/Pt heterostructures. Appl. Phys. Lett. 115, 172402 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Juge, R. et al. Present-driven skyrmion dynamics and drive-dependent skyrmion Corridor impact in an ultrathin movie. Phys. Rev. Appl. 12, 044007 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Reichhardt, C., Ray, D. & Reichhardt, C. J. O. Collective transport properties of pushed skyrmions with random dysfunction. Phys. Rev. Lett. 114, 217202 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Zeissler, Okay. et al. Diameter-independent skyrmion Corridor angle noticed in chiral magnetic multilayers. Nat. Commun. 11, 428 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Litzius, Okay. et al. The position of temperature and drive present in skyrmion dynamics. Nat. Electron. 3, 30–36 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kim, J.-V. & Yoo, M.-W. Present-driven skyrmion dynamics in disordered movies. Appl. Phys. Lett. 110, 132404 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Legrand, W. et al. Room-temperature current-induced technology and movement of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion noticed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).

    Article 

    Google Scholar
     

  • Hrabec, A. et al. Present-induced skyrmion technology and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Torrejon, J., Martinez, E. & Hayashi, M. Tunable inertia of chiral magnetic area partitions. Nat. Commun. 7, 13533 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zang, J., Cros, V. & Hoffmann, A. in Topology in Magnetism Ch. 2 (Springer, 2019).

  • Baumgartner, M. & Gambardella, P. Uneven velocity and tilt angle of area partitions induced by spin-orbit torques. Appl. Phys. Lett. 113, 242402 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Caretta, L. et al. Quick current-driven area partitions and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kubota, M. et al. Systematic management of stress-induced anisotropy in pseudomorphic iron garnet skinny movies. J. Magn. Magn. Mater. 339, 63–70 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Tetienne, J. P.-P. et al. The character of area partitions in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy middle spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gross, I. et al. Skyrmion morphology in ultrathin magnetic movies. Phys. Rev. Mater. 2, 024406 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect facilities. Science 276, 2012–2014 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Wangsness, R. Okay. Sublattice results in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).

    CAS 
    Article 

    Google Scholar
     

  • Collet, M. et al. Technology of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Paulevé, J. Ferromagnetic resonance of gadolinium garnet at 9300 МC/S. C. R. Acad. Sci. 244, 1908–1910 (1957).

  • Ding, S. et al. Figuring out the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii–Moriya interplay in a ferrimagnetic insulator heterostructure. Phys. Rev. B 102, 054425 (2020).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    1 × one =

    Most Popular

    Recent Comments