Hosseini M, Shafiee A. Engineering bioactive scaffolds for pores and skin regeneration. Small. 2021;17:e2101384.
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound restore and regeneration. Nature. 2008;453:314–21.
Bardill J R, Laughter M R, Stager M, Liechty Ok W, Krebs M D, Zgheib C. Topical gel-based biomaterials for the therapy of diabetic foot ulcers. Acta Biomater. 2022;138:73–91.
Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, Ma L, Guan J. Sustained oxygenation accelerates diabetic wound therapeutic by selling epithelialization and angiogenesis and reducing irritation. Sci Adv. 2021;7:eabj0153.
Liang Y, He J, Guo B. Purposeful hydrogels as wound dressing to reinforce wound therapeutic. ACS Nano. 2021;15:12687–722.
Tallapaneni V, Kalaivani C, Pamu D, Mude L, Singh SK, Karri V. Acellular scaffolds as revolutionary biomaterial platforms for the administration of diabetic wounds. Tissue Eng Regen Med. 2021;18:713–34.
Gaskell EE, Hamilton AR. Antimicrobial clay-based supplies for wound care. Future Med Chem. 2014;6:641–55.
Santos AC, Pereira I, Reis S, Veiga F, Saleh M, Lvov Y. Biomedical potential of clay nanotube formulations and their toxicity evaluation. Professional Opin Drug Deliv. 2019;16:1169–82.
Ji X, Ge L, Liu C, Tang Z, Xiao Y, Chen W, Lei Z, Gao W, Blake S, De D, Shi B, Zeng X, Kong N, Zhang X, Tao W. Capturing useful two-dimensional nanosheets from sandwich-structure vermiculite for most cancers theranostics. Nat Commun. 2021;12:1124.
Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metallic anodes: suppression, regulation, and elimination. Acc Chem Res. 2019;52:3223–32.
Yin X, Zhang L, Harigai M, Wang X, Ning S, Nakase M, Koma Y, Inaba Y, Takeshita Ok. Hydrothermal-treatment desorption of cesium from clay minerals: the roles of natural acids and implications for soil decontamination. Water Res. 2020;177:115804.
Janica I, Del Buffa S, Mikolajczak A, Eredia M, Pakulski D, Ciesielski A, Samori P. Thermal insulation with 2D supplies: liquid section exfoliated vermiculite useful nanosheets. Nanoscale. 2018;10:23182–90.
Shao JJ, Raidongia Ok, Koltonow AR, Huang J. Self-assembled two-dimensional nanofluidic proton channels with excessive thermal stability. Nat Commun. 2015;6:7602.
Pan XF, Gao HL, Lu Y, Wu CY, Wu YD, Wang XY, Pan ZQ, Dong L, Tune YH, Cong HP, Yu SH. Remodeling floor mica into high-performance biomimetic polymeric mica movie. Nat Commun. 2018;9:2974.
Alekseeva T, Alekseev A, Xu RK, Zhao AZ, Kalinin P. Impact of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in jap China. Environ Geochem Well being. 2011;33:137–48.
Yu L, Shang X, Chen H, Xiao L, Zhu Y, Fan J. A tightly-bonded and versatile mesoporous zeolite-cotton hybrid hemostat. Nat Commun. 2019;10:1932.
Zhang W, Zhang Y, Zhang A, Ling C, Sheng R, Li X, Yao Q, Chen J. Enzymatically crosslinked silk-nanosilicate bolstered hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Mater Sci Eng C. 2021;127:112215.
Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new ideas, supplies, and purposes. Acc Chem Res. 2017;50:1976–87.
Xiao Y, Peng J, Liu Q, Chen L, Shi Ok, Han R, Yang Q, Zhong L, Zha R, Qu Y, Qian Z. Ultrasmall CuS@BSA nanoparticles with gentle photothermal conversion synergistically induce MSCs-differentiated fibroblast and enhance pores and skin regeneration. Theranostics. 2020;10:1500–13.
Cui C, Solar S, Wu S, Chen S, Ma J, Zhou F. Electrospun chitosan nanofibers for wound therapeutic utility. Eng Regen. 2021;2:82–90.
Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally activated electrospun nanofiber mats for high-efficiency surface-mediated gene transfection. ACS Appl Mater Interfaces. 2020;12:7905–14.
Chen L, Zhang L, Zhang H, Solar X, Liu D, Zhang J, Zhang Y, Cheng L, Santos HA, Cui W. Programmable immune activating electrospun fibers for pores and skin regeneration. Bioact Mater. 2021;6:3218–30.
Abadehie FS, Dehkordi AH, Zafari M, Bagheri M, Yousefiasl S, Pourmotabed S, Mahmoodnia L, Validi M, Ashrafizadeh M, Zare EN. Lawsone-encapsulated chitosan/polyethylene oxide nanofibrous mat as a possible antibacterial biobased wound dressing. Eng Regen. 2021;2:219–26.
Wang Z, Qian Y, Li L, Pan L, Njunge LW, Dong L, Yang L. Analysis of emulsion electrospun polycaprolactone/hyaluronan/epidermal progress issue nanofibrous scaffolds for wound therapeutic. J Biomater Appl. 2016;30:686–98.
Choi JS, Leong KW, Yoo HS. In vivo wound therapeutic of diabetic ulcers utilizing electrospun nanofibers immobilized with human epidermal progress issue (EGF). Biomaterials. 2008;29:587–96.
Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaco R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Polyaniline-polycaprolactone fibers for neural purposes: electroconductivity enhanced by pseudo-doping. Mater Sci Eng C. 2021;120:111680.
Fu J, Wang M, De Vlaminck I, Wang Y. Thick PCL fibers enhancing host transforming of PGS-PCL composite grafts implanted in rat frequent carotid arteries. Small. 2020;16:e2004133.
Feiner R, Wertheim L, Gazit D, Kalish O, Mishal G, Shapira A, Dvir T. A stretchable and versatile cardiac tissue-electronics hybrid enabling a number of drug launch, sensing, and stimulation. Small. 2019;15:e1805526.
Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck Ok, Huang C, De Smedt SC, Braeckmans Ok. Photothermal nanofibres allow secure engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.
Ma Ok, Liao C, Huang L, Liang R, Zhao J, Zheng L, Su W. Electrospun PCL/MoS2 nanofiber membranes mixed with NIR-triggered photothermal remedy to speed up bone regeneration. Small. 2021;17:e2104747.
Su N, Gao PL, Wang Ok, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine operate of mesenchymal stem cells: a brand new dimension in cell–materials interplay. Biomaterials. 2017;141:74–85.
Dashnyam Ok, Jin GZ, Kim JH, Perez R, Jang JH, Kim HW. Selling angiogenesis with mesoporous microcarriers by a synergistic motion of delivered silicon ion and VEGF. Biomaterials. 2017;116:145–57.
Mace KA, Yu DH, Paydar KZ, Boudreau N, Younger DM. Sustained expression of Hif-1alpha within the diabetic setting promotes angiogenesis and cutaneous wound restore. Wound Restore Regen. 2007;15:636–45.
Ahluwalia A, Tarnawski AS. Vital position of hypoxia sensor-HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue harm therapeutic. Curr Med Chem. 2012;19:90–7.
Qing M, Gorlach A, Schumacher Ok, Woltje M, Vazquez-Jimenez JF, Hess J, Seghaye MC. The hypoxia-inducible issue HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects. Fundamental Res Cardiol. 2007;102:224–32.
Jiang X, Malkovskiy AV, Tian W, Sung YK, Solar W, Hsu JL, Manickam S, Wagh D, Joubert LM, Semenza GL, Rajadas J, Nicolls MR. Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles. Biomaterials. 2014;35:803–13.
Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong VKW, Xiang Y, Lin L, Ma DL, Leung CH. A small molecule HIF-1alpha stabilizer that accelerates diabetic wound therapeutic. Nat Commun. 2021;12:3363.
Shen T, Han T, Zhao Q, Ding F, Mao S, Gao M. Environment friendly elimination of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: adsorption research and mannequin calculations. Chemosphere. 2022;295:133846.
Fadaie M, Mirzaei E. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile energy and mobile habits. Nanomed J. 2018;5:77–89.
Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering purposes. Biomacromolecules. 2005;6:1961–76.
Li H, Xue Ok, Kong N, Liu Ok, Chang J. Silicate bioceramics enhanced vascularization and osteogenesis by stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials. 2014;35:3803–18.
Ma W, Ma H, Qiu P, Zhang H, Yang Z, Ma B, Chang J, Shi X, Wu C. Sprayable beta-FeSi2 composite hydrogel for transportable pores and skin tumor therapy and wound therapeutic. Biomaterials. 2021;279:121225.
Cakin MC, Ozdemir B, Kaya-Dagistanli F, Arkan H, Bahtiyar N, Anapali M, Akbas F, Onaran I. Analysis of the in vivo wound therapeutic potential of the lipid fraction from activated platelet-rich plasma. Platelets. 2020;31:513–20.
Wu J, Chen A, Zhou Y, Zheng S, Yang Y, An Y, Xu Ok, He H, Kang J, Luckanagul J A, Xian M, Xiao J, Wang Q. Novel H2S-releasing hydrogel for wound restore by way of in situ polarization of M2 macrophages. Biomaterials. 2019;222:119398.
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative drugs and drug supply: progress by way of electrospun biomaterials. Mater Sci Eng C. 2020;109:110521.
Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A. Electrospun chitosan membranes containing bioactive and therapeutic brokers for enhanced wound therapeutic. Int J Biol Macromol. 2020;156:153–70.
Rafique M, Wei T, Solar Q, Midgley A C, Huang Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, Kong D, Wang Ok. The impact of hypoxia-mimicking responses on enhancing the regeneration of synthetic vascular grafts. Biomaterials. 2021;271:120746.
Sandri G, Faccendini A, Longo M, Ruggeri M, Rossi S, Bonferoni M C, Miele D, Prina-Mello A, Aguzzi C, Viseras C, Ferrari F. Halloysite- and montmorillonite-loaded scaffolds as enhancers of power wound therapeutic. Pharmaceutics. 2020;12:179.
Web page DJ, Clarkin CE, Mani R, Khan NA, Dawson JI, Evans ND. Injectable nanoclay gels for angiogenesis. Acta Biomater. 2019;100:378–87.
Delyanee M, Solouk A, Akbari S, Daliri MJ. Hemostatic electrospun nanocomposite containing poly(lactic acid)/halloysite nanotube functionalized by poly(amidoamine) dendrimer for wound therapeutic utility: in vitro and in vivo assays. Macromol Biosci. 2021;22:2100313.
Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP. Tissue-engineered pores and skin substitutes. Plast Reconstr Surg. 2015;136:1379–88.
Hou Y, Li J, Guan S, Witte F. The therapeutic potential of MSC-EVs as a bioactive materials for wound therapeutic. Eng Regen. 2022. https://doi.org/10.1016/j.engreg.2021.11.003.
el-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Impact of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.
Yang Y, Huang Ok, Wang M, Wang Q, Chang H, Liang Y, Wang Q, Zhao J, Tang T, Yang S. Ubiquitination move repressors: enhancing wound therapeutic of infectious diabetic ulcers by stabilization of polyubiquitinated hypoxia-inducible factor-1alpha by theranostic nitric oxide nanogenerators. Adv Mater. 2021;33:e2103593.
Maier JA, Bernardini D, Rayssiguier Y, Mazur A. Excessive concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta Mol Foundation Dis. 2004;1689:6–12.
Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential comfortable tissue engineering purposes. Sci Rep. 2018;8:1047.
Wu JJ, Weis MA, Kim LS, Eyre DR. Kind III collagen, a fibril community modifier in articular cartilage. J Biol Chem. 2010;285:18537–44.
Brisson BK, Stewart DC, Burgwin C, Chenoweth D, Wells RG, Adams SL, Volk SW. Cysteine-rich area of sort III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biol. 2022;109:19–33.
Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S, Pereira T, Yla-Herttuala S, Poellinger L, Brismar Ok, Catrina SB. Stabilization of HIF-1alpha is vital to enhance wound therapeutic in diabetic mice. Proc Natl Acad Sci USA. 2008;105:19426–31.
Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients by HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.
Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK. Predominant position of endothelial nitric oxide synthase in vascular endothelial progress factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98:2604–9.
Broughton G, Janis JE, Attinger CE. The fundamental science of wound therapeutic. Plast Reconstr Surg. 2006;117:12S-34S.
Peng Y, Wu S, Li Y, Crane JL. Kind H blood vessels in bone modeling and transforming. Theranostics. 2020;10:426–36.
Zhai Y, Schilling Ok, Wang T, El Khatib M, Vinogradov S, Brown E B, Zhang X. Spatiotemporal blood vessel specification on the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials. 2021;276:121041.
Hu C, Chu C, Liu L, Wang C, Jin S, Yang R, Rung S, Li J, Qu Y, Man Y. Dissecting the microenvironment round biosynthetic scaffolds in murine pores and skin wound therapeutic. Sci Adv. 2021;7:eabf0787.
Ren X, Han Y, Wang J, Jiang Y, Yi Z, Xu H, Ke Q. An aligned porous electrospun fibrous membrane with managed drug supply—an environment friendly technique to speed up diabetic wound therapeutic with improved angiogenesis. Acta Biomater. 2018;70:140–53.
Okesola BO, Mendoza-Martinez AK, Cidonio G, Derkus B, Boccorh DK, Osuna de la Peña D, Elsharkawy S, Wu Y, Dawson JI, Wark AW, Knani D, Adams DJ, Oreffo ROC, Mata A. De novo design of useful coassembling natural–inorganic hydrogels for hierarchical mineralization and neovascularization. ACS Nano. 2021;15:11202–17.